

 1

Umple: Bridging the Code-Model Divide

Timothy C. Lethbridge, Andrew Forward, Dusan Brestovansky
School of Information Technology and Engineering, University of Ottawa

{tcl,aforward}@site.uottawa.ca, dbres042@gmail.com

Abstract

We present an approach to object-oriented software

engineering intended to reduce the ever-present
tension between model-centric and code-centric
developers. The former prefer to model visually and
generate code, while the latter see source code as the
only important software artifact. The core of the
Umple approach is to add UML abstractions such as
associations directly into a high-level programming
language – our current implementation works with
Java. With Umple, the developer can work
interchangeably with UML diagrams and Umple code;
these are just views of the same thing. We describe the
basics of Umple as well as the tools used to work with
it; these include plugins for Eclipse and Rational
Software Modeler. To demonstrate the benefits of the
approach, we present as case studies a few systems we
have developed in Umple, in particular the functional
layers of airline reservation, elevator control and
timesheet management systems.

1. Introduction

In this paper, we present Umple. Umple can be
viewed from several perspectives. It can be seen as a
programming language based on Java that incorporates
UML constructs to raise the level of abstraction. It can
be viewed as a tool for rapidly creating UML
diagrams. Or it can be viewed as a tool to help broaden
the appeal of modeling by allowing models to be
created textually. In fact, it is all three of these.

In the next section we discuss our motivations for
developing Umple. These include the lack of adoption
of modeling technology caused in part by difficulties
using modeling tools, and a desire to reduce the
amount of code needed in certain object-oriented
programming tasks.

Then we present various aspects of Umple: These
include the overall philosophy, the concrete syntax, an
overview of the semantics and the tools we have
developed.

Finally, we present some case studies that
demonstrate the value of the Umple approach.

2. Motivations

Our desire to develop Umple arose for two main

reasons. We address each of these in the following
subsections. Together, these motivations naturally led
us to want to develop Umple.

2.1 Prevalence of the code-centric approach in
software engineering: Lack of adoption of
modeling

Many software engineering researchers and opinion

leaders describe what they see as the obvious benefits
of modeling. Principal among these is enabling
developers to work at a higher level of abstraction [1].
However, when one interacts with developers in real
companies, is clear that the overwhelming majority of
developers see source code as their primary work
medium, Most of them will draw diagrams when
explaining concepts in design meetings, and include
some of them in design documents, but relatively few
use models to actually drive development. This is
particularly true in the agile and open source
communities [2].

2.1.1 A brief literature survey: There has been some
research into why modeling is not more
enthusiastically adopted. Afonso et al [3] state that
although modeling is standard in the database design
community (where use of Entity Relationship
Diagrams is the norm), “there is little practical
evidence of the impact” of model-driven approaches
among the broader software engineering community.

There are clearly a number of common obstacles to
modeling. Berenbach et al [4] suggest that these
include a belief among developers that modeling is
only about drawing “pretty pictures”, and not
understanding well enough how to model in the
prevalent object-oriented paradigm.

 2

Modeling is seemingly particularly important for
safety-critical systems. Anda et al. [5] studied
practitioners in this domain and note that they had
good results when they adopted a more model-oriented
approach. Difficulties using modeling tools and the
costs of training were the biggest obstacles. Another
obstacle was tendency of management to remain be
oriented towards the production of source code.

The Object Management Group is the main industry
association interested in promoting modeling. They
supported Dobing and Parsons [6] in a survey in which
171 practitioners were asked how they use UML in
practice. Most respondents felt that UML is indeed
useful in software development, but half the said they
did not fully understand class diagrams. The study
concluded that complexity of UML is one of the main
obstacles to its use.

One issue to consider is whether performing
modeling has sufficient return on investment. Arisholm
et al. [7] concluded from a controlled study that the
costs of maintaining UML documentation may
sometimes outweigh the benefits of modeling.

Another issue is the usability of modeling tools.
Agerwal et al, [8], [9] studied this issue and found that
poor usability contributes to higher than necessary
costs associated with modeling.

Adoption is, of course, an issue with many tools and
technologies. Sultan and Chan [10] provide and in-
depth discussion of object-oriented technology
adoption. They conclude that lack of adoption is likely
not due to intrinsic weaknesses in the technology, but
has more to do with culture and management.

2.1.2 Our own study of participants: We

conducted our own study [11] of 113 software
developers in a wide variety of industries and
countries. We received responses that seem more
positive that what is reported in the literature cited
above.

Well over half of our respondents do in fact perform
some type of modeling, with about 52% using UML
often or always. Sixty percent use visual notations to
document their code prior to design, although only a
third always do this. However, only 17.5% often or
always generate code from models and 36.5% never do
this. Most of the value of models is therefore to
document and communicate designs. Eighty percent in
fact said that modeling tools are poor or awful at the
task of generating all the code for a system.

We presented the respondents with a list
development styles as follows a) Model-only:
Approaches where the model is effectively all there is,
except for small amounts of code. b) Model-centric:
Approaches where modeling is performed first and
code is generated from the model, for possible

subsequent manual manipulation. c) Model-as-design-
aid: Approaches where modeling is done for design
purposes, but then code is written mostly by hand. d)
Model-as-documentation: Approaches where modeling
is done to outline or describe the system, largely after
the code is written; and e) Code-centric: Approaches
where modeling is almost entirely absent.

The respondents in our study felt that for corrective
maintenance and developing efficient software the
code-centric end of the spectrum would be better,
however, they agreed that for almost all other tasks,
including new development, adaptive maintenance, and
program comprehension, model-centric approaches
work best.

The respondents had three main criticisms of the
model centric approach: 68% felt that it is a bad or
terrible problem that models become out of date or
inconsistent with the code; 52% complained about
incompatibility among tools, and 39% complained
about tools being too heavyweight.

On the other hand the respondents also had
complaints about code-centric approaches: Two thirds
complained about difficulties understanding the design
or behaviour of the system based on code, and over
half complained about code being difficult to change in
general, as compared to models.

2.1.3 Personal experiences. We do a considerable

amount of modeling and would like to be able to
generate and modify UML diagrams very rapidly.
Whether it be for teaching UML, illustrating books or
papers, or developing actual systems, we have found
both the commercial and open source tools slower at
modeling than we would like.

2.1.4 Summary and links to Umple. We conclude

from the above that the reasons for lack of more
wholehearted adoption of modeling seem to be as
follows:

a) Code generation doesn’t work as well as it needs
to;

b) Modeling tools are too difficult to use;
c) A culture of coding prevails and is hard to

overcome;
d) There is a lack of understanding of modeling

notations and technologies;
e) The code-centric approach works well enough,

such that the return on investment of changing is
marginal, yet the risks high.

The Umple approach addresses all these reasons.
Point a) is addressed by the fact that Umple is a
programming language, and a simple one. One of the
main difficulties in generating code from a language
like UML is that the semantics of UML were in fact
explicitly designed to be for abstract modeling – it is

 3

difficult to translate a model into code. Umple adopts
key modeling features, but in its design we have
chosen to err on the side of making it simple and
usable for programming. It adopts Java semantics
when these differ from UML semantics.

Umple addresses point b) by allowing modeling to
be done using a simple text editor. Umple has a Java-
like syntax so a syntax-directed editor can be used to
help produce error-free code or models. At the same
time, however, the Umple tools provide the capability
to rendering Umple code as UML diagrams directly in
IBM’s Rational Software Modeler. The user therefore
has the ‘best of both worlds’.

Umple addresses point c) simply because it does not
try to go against the prevalent coding culture. Umple
allows you to keep coding, even though you are
actually developing using some features that are at a
modeling level of abstraction. If you are in the
modeling culture, and want to work with full UML
models in diagrammatic form, Umple does not stop
you from take that approach either: You can use Umple
code to generate or edit your diagrams.

Umple addresses point d) by only introducing the
very simplest modeling concepts in its initial release.
These include associations (with multiplicity),
attributes, association classes and a few basic design
patterns. This is intended to ease the transition for
users of Umple.

Finally, Umple addresses point e) by providing a
path to adoption that doesn’t require a major
investment.

2.2 Reducing the need to program boilerplate
code.

In the last section we explained our first motivation

for developing Umple: A desire to ease people’s ability
to model.

However our second major motivation is to ease
people’s ability to write object-oriented code.

Long before the advent of UML it was a
commonplace object-oriented programming idiom for
two classes to contain instance variables that reference
the opposite class. The programming challenges
included maintaining referential integrity, and deciding
which class would take the prime responsibility for
adding and deleting the references (links) between
objects of the two classes.

With the coming of object-oriented modeling
languages (e.g., OMT and later UML) these between-
class references were modeled as associations. We will
not describe the syntax or semantics of UML
associations here, referring the reader to the UML

specification [14], or one of the many books on the
subject. e.g. [13].

Ultimately, however, association abstractions still
have to be rendered into programming language code.

Unless one can use a UML tool that can generate
the code for you, the first thing you need to do is to
declare instance variables. In Java and other OO
languages, the class opposite a ‘1’ or ‘0..1’
bidirectional association end would typically contain
an instance variable with its type declared to be the
other class. For a many association end (*), one of the
collection classes would be used as in the instance
variable’s type. In C++ and in Java since version 1.5,
genericity can be used to constrain the contents of this
collection to be only objects of the ‘other’ class.

Next, an appropriate set of methods must be written
to instantiate these variables, and allow bidirectional
links to be established and changed as needed.
Developing bug-free code to do this involves
considerable work. However, the code ends up being
very similar from association to association. It is called
‘boilerplate’ code because it is standard in nature, yet
needs to be replicated in many parts of a system.

With Umple, this boilerplate code for associations is
completely eliminated. Instead one declares
associations and lets the compiler take care of the rest.

3. Description of Umple

The word ‘Umple’ is a play on words, meaning
‘Simple’, ‘UML programming Language’ and
‘Ample’. Let us expand on these concepts a little:

3.1 Simple

Umple is intended to be simple from the

programmer’s perspective because, a) there is less code
to write, and b) there are fewer degrees of freedom
than either java or UML. Code that is eliminated
includes boilerplate code for adding, deleting and
modifying associations, as well as constructors and
methods for accessing variables. In all these cases, and
many others, Umple provides sensible default
implementations.

An Umple program deliberately enforces a highly
layered style of software. In particular it provides no
user interface facilities other than a debugging
mechanism. The result of compiling Umple code is the
generation of a Java Archive file (JAR) containing an
API that can be accessed by other layers, such as a user
interface layer.

The generated API can be accessed either by Java
code or through web services. Data passed back and
forth through web services uses the JavaScript Object

 4

Notation (JSON) format. JSON is considerably simpler
than XML, and allows easy integration of Umple-
based business logic with AJAX-style web
applications.

3.2 UML programming language

Umple adds key features of UML to Java. In this

paper we will focus on associations and attributes. As
mentioned earlier, Umple can be used to generate
UML class diagrams, or alternatively a class diagram
can be rendered straightforwardly into Umple. We are
also adding state machines to Umple, but we will not
discuss that feature in the current paper since it is less
mature, and because space is limited.

3.3 Ample

Despite the restrictions imposed by the deliberate

simplicity of Umple, it is intended to have sufficient
power to program the functional layer of most kinds of
system. As we will describe later, we have used it for
several moderately-sized applications including an
airline scheduling system and an elevator control
system.

3.4 Motivating example

We will provide the following motivating example.

This example shows how one would declare attributes
and associations, if one were just starting the process
of modeling a system.

class Student {}

class Registration {
 String grade;
 * -- 1 Student;
 * -- 1 CourseSection;
}

class CourseSection {}

Immediately after writing the above Umple code,

we can generate a class diagram of this tiny system.
This is shown in Figure 1. We can also compile the
system; the result would be an executable Java archive
(JAR) file with an API that allows us to create
instances of the classes, as well as add and delete links
of the associations. We could also plug the result into a
web server, and the API would be available as web
services.

As the above example shows, the basic declaration
of a class follows the syntactic style of Java or C++.

Let us now look at the other syntactic elements
illustrated above.

3.5 Attributes

The declaration of attributes looks very much like

the declaration of instance variables in Java. However,
there are some important differences. Firstly the set of
primitive data types is different. In the initial version
we allow Integer, Float, Date, Time, String, Boolean
and Enum. This set was chosen to cover most basic
modeling needs, without having to deal with the
complexities of ‘primitive’ vs. ‘class’ datatypes. The
Integer type will in fact generate ‘int’ code when
compiled in Java, but we want to insulate the user from
that. The set of attribute types is also inspired by those
available in relational databases.

It is possible to leave an attribute untyped. This can
be useful when you simply want to use Umple to
quickly generate a class diagram. The default datatype
is String, so you still can compile an Umple file that
has untyped attributes. This concept of allowing
information to be omitted follows the UML
convention.

The presence of an attribute generally means the
following:

• The generated API will have methods getX() and

setX(), where X is the attribute name. So in the
above example, there would be setGrade() and
getGrade() methods.

• Code in Umple methods (discussed later) will be
able to use the attributes on the left and right of
an assignment, and in method arguments.

There are additional notations relating to attributes

that an Umple programmer can use for common
programming situations. We will only outline these
briefly here. Each of these keywords is placed before
the data type.

The following four are mutually exclusive

immutable: The attribute must be set in the

constructor and cannot then be set again, so there is no
setX method. An entire class can be declared
immutable, as discussed later.

key: Indicates that this attribute is to be part of the
unique key. Uniqueness of keys is enforced, and an
exception is thrown of the uniqueness is violated in an

Figure 1: UML class diagram for part of a

student registration system (from [13])

 5

attempt to instantiate an object. Key implies
immutable.

autounique specified on an Integer attribute
indicates that a new integer unique within the class will
be issued each time an object is instantiated; no
argument for the attribute will appear in the
constructor.

settable: The attribute can be set by the setX
method, but only once.

As in java, an attribute can be given an initial value.

For example

String grade = “INC”;

Finally, by default, access to attributes is public in

the Java sense. The keyword private prevents the
attribute from appearing on the API for external
systems to use. Private attributes are also not
transmitted over the API.

3.6 Associations

Associations are the key feature that makes the first

version of Umple interesting. The declaration of an
association is designed to look visually similar to how
it would look in a UML class diagram.

In the above example, and in Figure 1, we see that
there is a many-to-one association between
Registration and Student.

Declarations of associations can appear in two
places in Umple. They can appear inside one of the two
associated classes, or else as standalone ‘first class’
associations.

The basic syntax for an inline association is

<mult1> {<role1>} <direct> {<asname>} <mult2>

<class2> {<role2>};

<mult1> and <mult2> follow the standard UML

syntax for multiplicity, so typical values are 0..1, 1,
1..* and *.

<role1> and <role2> are role names following the

UML convention. They should be nouns that represent

the class in a certain context. For example the code for
Figure 1 could be enhanced thus:

* -- 1 registrant Student

Registrant is a role name that would appear on the

association when the diagram is rendered visually.

<asname> is an optional association name following

the UML convention. We find that we use this
relatively rarely, preferring to use role names.

<direct> is one of ‘--‘ for a bidirectional
association, ‘->’ or ‘<-‘, the latter two meaning that
navigation is limited to the direction given by the
arrow. The above code uses only bidirectional
associations.

Class Registration above has two inline
associations. Both of these associations could have
instead been placed in the second class, so for example
in Student we could have had

1 -- * Registration;

This association could have been placed on its own

as a standalone association as follows:

association {
 1 Student -- * Registration; }

The general syntax for standalone associations is:

<mult1> <class1> {<role1>} <direct> {<asname>}

<mult2> <class2> {<role2>};

The only difference between this and the syntax for

inline associations that the additional class must
appear. For inline associations, <class1> is implicitly
the containing class.

Finally Umple supports UML’s notion of
association classes. These use the notation shown in
Figure 2.

The code to generate Figure 2 is as follows:

class Student {}

association Registration {
 String grade;
 * Student -- * CourseSection;
}

class CourseSection {}

Those familiar with UML will recognize that the

functionality embodied in Figures 1 and 2 is essentially
the same.

Figure 2: A UML association class

 6

3.7 Generalizations

There are two approaches to create a generalization

relationship in Umple. One can simple add an
expression in the subclass following the syntax:

isa <superclass>;

Or one can embed the subclass definition inside the

definition of the superclass. For example, the following
are equivalent:

class Manager {
 isa Employee;}
class employee {}

class Manager {
 class Employee {}
}

The embedded form is nice in that the inheritance

hierarchy appears visually as increasing levels of
indentation.

3.8 Other annotations that can be added to
Umple code.

We will not attempt to describe all the features of

Umple, but the following are some of the more
interesting.

A class can be declared a singleton. This ensures
that only a single instance can be created, and
eliminates the need for the standard boilerplate code to
implement the singleton design pattern.

A class can also be declared immutable, meaning
that all attributes must be provided in the constructor,
and there will be no setX methods.

A class can be declared as a façade. This means that
the only methods available through the generated API
will be the ones that appear in this class.

The syntax namespace <name> can be used to
organize code into packages.

3.9 Java-like code for methods

Methods in Umple look very much like Java

methods. In fact, the compiler relies on the Java parser
to convert them into bytecode. However there are
certain restrictions placed on the code in a pre-
processing step:

Umple methods can only do the following:

a) Read and write attributes. Direct attribute access
is converted to calls to the appropriate setX and getX
methods. Rules about immutability are enforced.

b) Navigate associations where the other end is ‘1’
in the same manner as accessing attributes.

b) Navigate ‘many’ associations by calling a built-
in method to obtain a List iterator.

c) Instantiate objects, destroy objects, and add,
delete and update links of associations by calling
methods generated for this purpose. Referential
integrity is automatically maintained.

d) Call methods in this and immediately
neighboring classes. We enforce the Law of Demeter
[15] to improve the maintainability of the resulting
system.

e) Perform normal Java computations with local
variables declared using limited set of data types.

Umple methods can be placed inline in the class, or

can be written in separate files that can be merged into
several classes. This provides a Ruby-like mixin
capability.

A number of important rules are enforced when
Umple works with associations. The full set of rules
flows naturally from the semantics of associations. For
example:

• Creating a new object of a class (called a ‘driver’
class) that has ‘1’ associations to other classes (called
‘subordinate’ classes), implies that instances of the
subordinate classes must be created simultaneously.
The constructor will ensure this takes place. This effect
can cascade to further subordinates.

• Deleting an object of such a driver class will result
in destroying the subordinate objects. This effect can
also cascade.

• Exceptions are thrown if attempts are made to
violate multiplicity.

3.10 Umple as a language family

In the above discussion, we have presented the

version of Umple that incorporates Java methods and
follows Umple syntax.

However the important thing about Umple is the
concept of adding UML associations and attributes to a
programming language. We are working on doing the
same thing with Ruby. When we discussing the Java-
specific flavor of Umple, we use the term Jumple, and
when we are discussing the Ruby-specific flavor, we
use the term Rumple.

We have also created a member of the Umple
family called Bumple. This applies many of the same
concepts to Business Process Execution Language
(BPEL) instead of UML.

 7

In the remainder of the paper our references to
Umple imply Jumple.

4. Using Umple

The tooling we have built for Umple consists of the
following:

• A standalone compiler (UmpleCore).
• A plugin to IBM Rational Software Modeler that

allows one to generate and work with UML class
diagrams.

• A runtime environment that allows one to navigate
Umple and Java objects, and to call the methods in the
API.

• A simple environment that combines the compiler
and the runtime environment.

The ensemble of components is illustrated in Figure
4.

5. Case studies

We have created a significant body of Umple code
to act as a test suite. In this section, we want to present
three interesting cases.

5.1 Airline system

The first case study is of an airline system. We went

to Air Canada’s website and downloaded the pdf file of
their schedule, which includes code-shared flights from
star alliance and affiliated airlines. We processed the

pdf file to extract the essential data (using Excel
Macros); we then reverse-engineered what the schema
must look like.

The result of our reverse engineering effort was the
creation of the following code. Then we ran the code
through the Umple plugin of RSM to generate the
diagram, which appears in Figure 3.

class FlightTracker {
 singleton;
 1 -- * RegularFlight;
}

class RegularFlight {
 Integer flightNo;
 1 -- * RegularLeg;
 1 -- * RegularFlightSchedule;
}

class RegularLeg {
 * flightsTo -- 1 Airport destination;
 * flightsFrom -- 1 Airport origin;
 1 -- * RegularLegSchedule;
}

class RegularFlightSchedule {
 Date effectiveDate;
 Date discontinuedDate;
 1 -- * RegularLegSchedule;
}

Figure 3: UML class diagram for the reverse engineered airline scheduling system

 8

class RegularLegSchedule {
 Time depTime;
 Time arrTime;
 Integer midnightCrossings;
 * -> 1 Frequency regsched;
}

class AirplaneType {
 // e.g. “747”
 String typeCode;
 1 -- * RegularFlightSchedule;
}

class Airport {
 String code;
 String name;
}

class Frequency {
 // Days it operates
 Boolean Monday;
 Boolean Tuesday;
 Boolean Wednesday;
 Boolean Thursday;
 Boolean Friday;
 Boolean Saturday;
 Boolean Sunday;
}

Next we wrote a simple Java program to load all

10,000 objects into Umple-generated system and
perform some queries that navigated the associations to
search for flights matching various criteria.

The purpose of this case study was to demonstrate
that Umple can be used in a data reverse engineering
context and that the resulting Umple-generated system

can be put to serious use for rapid prototyping and
testing of business logic.

5.2 Timesheet management system

This case study involved re-creating the business

logic of commercial timesheet management system. In
a matter of a couple of hours, we were able to write
329 lines of Umple code for the business logic of the
system merely by examining through its user interface.
The resulting system contains over 30 classes, over 30
associations, several generalizations and numerous
attributes.

We were able to write virtually error-free code,
demonstrating that Umple is easy use for
programming. The only errors we encountered were
that we needed to specify role names in one situation
where there were two otherwise-identical associations
between two classes.

The resulting Java code generated by the Umple
compiler consists of 9224 lines! Most of that is
boilerplate code needed for manipulating and
navigating the associations.

5.3 Elevator simulation

In order to demonstrate that Umple is not just for

data processing, we created a simulation for multiple
banks of elevators in a complex building.

We used Umple code to model the classes and
associations, and then added methods to complete what
is necessary to allow the elevators to respond to events
such as buttons being pressed, arriving at a floor, a
door opening etc.

We connected the generated system to a separately-
written user interface that showed animated elevators.

Figure 4: Umple components

 9

6. Conclusions

Umple is a programming language that incorporates
UML concepts. It is also an environment to assist with
creation of UML models textually.

We created Umple to respond to two needs: The
first is the resistance to modeling prevalent in industry.
The second is the desire to eliminate boilerplate code
and thus simplify some aspects of object-oriented
programming.

We believe that a language like Umple can help
bridge the gap between model-centric developers and
code-centric developers because it allows both to
continue to do what they prefer, while also giving them
the benefits of the alternative approach.

In the current version of Umple we have focused on
implementing associations, attributes and a few design
patterns. We intend to expand Umple by also adding
state machines to the language.

We have created numerous testcases as part of the
test-driven development process we used to create
Umple. However, in this paper we highlighted three of
them. These case studies suggest that Umple is easy to
program with both rapidity and in an error-free
manner. The case studies also show that it can be used
to in tasks such as generating complex class diagrams,
reverse engineering systems, and creating new
systems. The Umple code can have in an extreme case
less than 4% of the number of lines of code that
corresponding Java code needs to have.

10. References

[1] L. Lavaggno, G. Martin, G., and B. Selic, eds., UML for
Real: Design of Embedded Real-Time Systems, Springer,
2004

[2] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of
software developers in Open Source projects: an Internet
based survey of contributors to the Linux kernel”, Research
Policy 32, 2003, pp. 1159-1177.

[3] M. Afonso, R. Vogel, and J. Teixeira, “From code centric
to model centric software engineering: practical case study of
MDD infusion in a systems integration company”, Int.
Wkshps. on Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for Pervasive and
Embedded Software, 2006, IEEE Computer Society, 10 pp.

[4] B. Berenbach, and S. Konrad, “Putting the "Engineering"
into Software Engineering with Models”, Int. Workshop on
Modeling in Software Engineering (MISE'07), IEEE
Computer Society, 2007, pp 4-4

[5] B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen,
“Experiences from introducing UML-based development in a
large safety-critical project”, Empirical Software
Engineering, 11, 4, Dec. 2006 pp 555-581

[6] B. Dobing, and J. Parsons, “How UML is Used”, CACM,
49, 5, May 2006, pp. 109-114.

[7] E. Arisholm, L.C. Briand, S.E. Hove, and Y. LaBiche,
“The impact of UML documentation on software
maintenance: an experimental evaluation”, IEEE Trans.
Softw. Engg., 32, 6, June 2006, pp. 365-381.

[8] R. Agarwal, P. De, A.P. Sinha, and M. Tanniru, “On the
usability of OO representations”. CACM 43, 10, Oct. 2000,
pp. 83-89.

[9] R. Agarwal and A.P. Sinha, “Object-oriented modeling
with UML: a study of developers' perceptions”, CACM 46, 9
Sep. 2003, pp. 248-256.

[10] F. Sultan and L. Chan, “The adoption of new
technology: the case of object-oriented computing in
software companies”, IEEE Trans. Engg. Mgmt. 47, 1, 2000,
pp. 106-126.

[11] A. Forward, Perceptions of Software Modeling: A
Survey of Software Practitioners, technical report, University
of Ottawa, 2007. http://www.site.uottawa.ca/
~tcl/gradtheses/aforwardphd/

[12] D. Brestovansky, “Exploring Textual Modeling using
the Umple Language”, Masters thesis in Computer Science,
University of Ottawa, http://www.site.uottawa.ca/
~tcl/gradtheses/dbrestovansky/

[13] T.C. Lethbridge and R. Laganière, Object-Oriented
Software Engineering: Practical Software Development
using UML and Java, McGraw Hill, 2001.

[14] Object Management Group, Unified Modeling
Language (UML), version 2.1.2, visited Sept 5, 2008,
http://www.omg.org/technology/documents/formal/uml.htm

[15] K. J. Lienberherr, “Formulations and benefits of the law
of Demeter”, ACM SIGPLAN Notices, 24, 3, March 1989, pp.
67-78.

